Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

3-Majority and 2-Choices with Many Opinions (2503.02426v1)

Published 4 Mar 2025 in cs.DC and cs.DM

Abstract: We present the first nearly-optimal bounds on the consensus time for the well-known synchronous consensus dynamics, specifically 3-Majority and 2-Choices, for an arbitrary number of opinions. In synchronous consensus dynamics, we consider an $n$-vertex complete graph with self-loops, where each vertex holds an opinion from ${1,\dots,k}$. At each discrete-time round, all vertices update their opinions simultaneously according to a given protocol. The goal is to reach a consensus, where all vertices support the same opinion. In 3-Majority, each vertex chooses three random neighbors with replacement and updates its opinion to match the majority, with ties broken randomly. In 2-Choices, each vertex chooses two random neighbors with replacement. If the selected vertices hold the same opinion, the vertex adopts that opinion. Otherwise, it retains its current opinion for that round. Improving upon a line of work [Becchetti et al., SPAA'14], [Becchetti et al., SODA'16], [Berenbrink et al., PODC'17], [Ghaffari and Lengler, PODC'18], we prove that, for every $2\le k \le n$, 3-Majority (resp.\ 2-Choices) reaches consensus within $\widetilde{\Theta}(\min{k,\sqrt{n}})$ (resp.\ $\widetilde{\Theta}(k)$) rounds with high probability. Prior to this work, the best known upper bound on the consensus time of 3-Majority was $\widetilde{O}(k)$ if $k \ll n{1/3}$ and $\widetilde{O}(n{2/3})$ otherwise, and for 2-Choices, the consensus time was known to be $\widetilde{O}(k)$ for $k\ll \sqrt{n}$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 45 likes.

Upgrade to Pro to view all of the tweets about this paper: