Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Hybrid Quantum Physics-informed Neural Network: Towards Efficient Learning of High-speed Flows (2503.02202v1)

Published 4 Mar 2025 in physics.comp-ph and physics.flu-dyn

Abstract: This study assesses the potential use of hybrid quantum physics-informed neural network (HQPINN) to model high-speed flows as an alternative to classical PINN and quantum neural network options. The model integrates parameterized quantum circuit (PQC) with classical neural network in parallel as input to a physics-based optimization. For problems with harmonic solutions, the HQPINN exhibits superior accuracy and trainability compared to both classical and quantum models at low parameter costs. For transonic flows, the hybrid approach yields modest results and additionally suffers from poor trainability if the quantum layer were under-parameterized. Our results highlight inherent limitations in deploying quantum neural networks in PINN applications, and potential use of hybrid architectures as a general tool in problems where the nature of the solution is not known a-priori.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: