Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

From Data to Uncertainty Sets: a Machine Learning Approach (2503.02173v1)

Published 4 Mar 2025 in cs.LG and math.OC

Abstract: Existing approaches of prescriptive analytics -- where inputs of an optimization model can be predicted by leveraging covariates in a machine learning model -- often attempt to optimize the mean value of an uncertain objective. However, when applied to uncertain constraints, these methods rarely work because satisfying a crucial constraint in expectation may result in a high probability of violation. To remedy this, we leverage robust optimization to protect a constraint against the uncertainty of a machine learning model's output. To do so, we design an uncertainty set based on the model's loss function. Intuitively, this approach attempts to minimize the uncertainty around a prediction. Extending guarantees from the robust optimization literature, we derive strong guarantees on the probability of violation. On synthetic computational experiments, our method requires uncertainty sets with radii up to one order of magnitude smaller than those of other approaches.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.