Papers
Topics
Authors
Recent
2000 character limit reached

Mapping representations in Reinforcement Learning via Semantic Alignment for Zero-Shot Stitching (2503.01881v1)

Published 26 Feb 2025 in cs.LG and cs.AI

Abstract: Deep Reinforcement Learning (RL) models often fail to generalize when even small changes occur in the environment's observations or task requirements. Addressing these shifts typically requires costly retraining, limiting the reusability of learned policies. In this paper, we build on recent work in semantic alignment to propose a zero-shot method for mapping between latent spaces across different agents trained on different visual and task variations. Specifically, we learn a transformation that maps embeddings from one agent's encoder to another agent's encoder without further fine-tuning. Our approach relies on a small set of "anchor" observations that are semantically aligned, which we use to estimate an affine or orthogonal transform. Once the transformation is found, an existing controller trained for one domain can interpret embeddings from a different (existing) encoder in a zero-shot fashion, skipping additional trainings. We empirically demonstrate that our framework preserves high performance under visual and task domain shifts. We empirically demonstrate zero-shot stitching performance on the CarRacing environment with changing background and task. By allowing modular re-assembly of existing policies, it paves the way for more robust, compositional RL in dynamically changing environments.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.