ProRCA: A Causal Python Package for Actionable Root Cause Analysis in Real-world Business Scenarios (2503.01475v1)
Abstract: Root Cause Analysis (RCA) is becoming ever more critical as modern systems grow in complexity, volume of data, and interdependencies. While traditional RCA methods frequently rely on correlation-based or rule-based techniques, these approaches can prove inadequate in highly dynamic, multi-layered environments. In this paper, we present a pathway-tracing package built on the DoWhy causal inference library. Our method integrates conditional anomaly scoring, noise-based attribution, and depth-first path exploration to reveal multi-hop causal chains. By systematically tracing entire causal pathways from an observed anomaly back to the initial triggers, our approach provides a comprehensive, end-to-end RCA solution. Experimental evaluations with synthetic anomaly injections demonstrate the package's ability to accurately isolate triggers and rank root causes by their overall significance.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.