Papers
Topics
Authors
Recent
2000 character limit reached

The Road Less Traveled: Investigating Robustness and Explainability in CNN Malware Detection

Published 3 Mar 2025 in cs.CR | (2503.01391v1)

Abstract: Machine learning has become a key tool in cybersecurity, improving both attack strategies and defense mechanisms. Deep learning models, particularly Convolutional Neural Networks (CNNs), have demonstrated high accuracy in detecting malware images generated from binary data. However, the decision-making process of these black-box models remains difficult to interpret. This study addresses this challenge by integrating quantitative analysis with explainability tools such as Occlusion Maps, HiResCAM, and SHAP to better understand CNN behavior in malware classification. We further demonstrate that obfuscation techniques can reduce model accuracy by up to 50%, and propose a mitigation strategy to enhance robustness. Additionally, we analyze heatmaps from multiple tests and outline a methodology for identification of artifacts, aiding researchers in conducting detailed manual investigations. This work contributes to improving the interpretability and resilience of deep learning-based intrusion detection systems

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.