Papers
Topics
Authors
Recent
2000 character limit reached

Existential and positive games: a comonadic and axiomatic view (2503.01247v2)

Published 3 Mar 2025 in cs.LO and math.LO

Abstract: A number of model-comparison games central to (finite) model theory, such as pebble and Ehrenfeucht-Fra\"{i}ss\'{e} games, can be captured as comonads on categories of relational structures. In particular, the coalgebras for these comonads encode in a syntax-free way preservation of resource-indexed logic fragments, such as first-order logic with bounded quantifier rank or a finite number of variables. In this paper, we extend this approach to existential and positive fragments (i.e., without universal quantifiers and without negations, respectively) of first-order and modal logic. We show, both concretely and at the axiomatic level of arboreal categories, that the preservation of existential fragments is characterised by the existence of so-called pathwise embeddings, while positive fragments are captured by a newly introduced notion of positive bisimulation. As an application, we offer a new proof of an equi-resource Lyndon positivity theorem for (multi)modal logic.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.