Papers
Topics
Authors
Recent
2000 character limit reached

The dimension and Bose distance of certain primitive BCH codes (2503.01118v2)

Published 3 Mar 2025 in cs.IT and math.IT

Abstract: Bose-Ray-Chaudhuri-Hocquenghem (BCH) codes are a significant class of cyclic codes that play an important role in both theoretical research and practical applications. Their strong error-correcting abilities and efficient encoding and decoding methods make BCH codes widely applicable in various areas, including communication systems, data storage devices, and consumer electronics. Although BCH codes have been extensively studied, the parameters of BCH codes are not known in general. Let $q$ be a prime power and $m$ be a positive integer. Denote by $\mathcal{C}{(q,m,\delta)}$ the narrow-sense primitive BCH code with length $qm-1$ and designed distance $\delta$. As of now, the dimensions of $\mathcal{C}{(q,m,\delta)}$ are fully understood only for $m \leq 2$. For $m \geq 4$, the dimensions of $\mathcal{C}{(q,m,\delta)}$ are known only for the range $2 \leq \delta \leq q{\lfloor (m+1)/2 \rfloor +1}$ and for a limited number of special cases. In this paper, we determined the dimension and Bose distance of $\mathcal{C}{(q,m,\delta)}$ for $m\geq 4$ and $\delta\in [2, q{\lfloor ( 2m-1)/{3}\rfloor+1}]. $ Additionally, we have also extended our results to primitive BCH codes that are not necessarily narrow-sense.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.