Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Large AI Model for Delay-Doppler Domain Channel Prediction in 6G OTFS-Based Vehicular Networks (2503.01116v2)

Published 3 Mar 2025 in eess.SP and cs.LG

Abstract: Channel prediction is crucial for high-mobility vehicular networks, as it enables the anticipation of future channel conditions and the proactive adjustment of communication strategies. However, achieving accurate vehicular channel prediction is challenging due to significant Doppler effects and rapid channel variations resulting from high-speed vehicle movement and complex propagation environments. In this paper, we propose a novel delay-Doppler (DD) domain channel prediction framework tailored for high-mobility vehicular networks. By transforming the channel representation into the DD domain, we obtain an intuitive, sparse, and stable depiction that closely aligns with the underlying physical propagation processes, effectively reducing the complex vehicular channel to a set of time-series parameters with enhanced predictability. Furthermore, we leverage the large AI model to predict these DD-domain time-series parameters, capitalizing on their advanced ability to model temporal correlations. The zero-shot capability of the pre-trained large AI model facilitates accurate channel predictions without requiring task-specific training, while subsequent fine-tuning on specific vehicular channel data further improves prediction accuracy. Extensive simulation results demonstrate the effectiveness of our DD-domain channel prediction framework and the superior accuracy of the large AI model in predicting time-series channel parameters, thereby highlighting the potential of our approach for robust vehicular communication systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.