Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

SolBench: A Dataset and Benchmark for Evaluating Functional Correctness in Solidity Code Completion and Repair (2503.01098v1)

Published 3 Mar 2025 in cs.SE, cs.AI, and cs.CL

Abstract: Smart contracts are crucial programs on blockchains, and their immutability post-deployment makes functional correctness vital. Despite progress in code completion models, benchmarks for Solidity, the primary smart contract language, are lacking. Existing metrics like BLEU do not adequately assess the functional correctness of generated smart contracts. To fill this gap, we introduce SolBench, a benchmark for evaluating the functional correctness of Solidity smart contracts generated by code completion models. SolBench includes 4,178 functions from 1,155 Ethereum-deployed contracts. Testing advanced models revealed challenges in generating correct code without context, as Solidity functions rely on context-defined variables and interfaces. To address this, we propose a Retrieval-Augmented Code Repair framework. In this framework, an executor verifies functional correctness, and if necessary, an LLM repairs the code using retrieved snippets informed by executor traces. We conduct a comprehensive evaluation of both closed-source and open-source LLMs across various model sizes and series to assess their performance in smart contract completion. The results show that code repair and retrieval techniques effectively enhance the correctness of smart contract completion while reducing computational costs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube