Papers
Topics
Authors
Recent
Search
2000 character limit reached

Alchemist: Towards the Design of Efficient Online Continual Learning System

Published 3 Mar 2025 in cs.LG, cs.CL, and cs.DC | (2503.01066v2)

Abstract: Continual learning has become a promising solution to refine LLMs incrementally by leveraging user feedback. In particular, online continual learning - iteratively training the model with small batches of user feedback - has demonstrated notable performance improvements. However, the existing practice of separating training and serving processes forces the online trainer to recompute the intermediate results already done during serving. Such redundant computations can account for 30%-42% of total training time. In this paper, we propose Alchemist, to the best of our knowledge, the first online continual learning system that efficiently reuses serving activations to increase training throughput. Alchemist introduces two key techniques: (1) recording and storing activations and KV cache only during the prefill phase to minimize latency and memory overhead; and (2) smart activation offloading and hedging. Evaluations with inputs of varied token length sampled from ShareGPT dataset show that compared with a separate training cluster, Alchemist significantly increases training throughput by up to 1.72x, reduces up to 47% memory usage during training, and supports up to 2x more training tokens - all while maintaining negligible impact on serving latency.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.