Optimal Trickle-Down Theorems for Path Complexes via C-Lorentzian Polynomials with Applications to Sampling and Log-Concave Sequences (2503.01005v2)
Abstract: Let $X$ be a $d$-partite $d$-dimensional simplicial complex with parts $T_1,\dots,T_d$ and let $\mu$ be a distribution on the facets of $X$. Informally, we say $(X,\mu)$ is a path complex if for any $i<j<k$ and $F \in T_i,G \in T_j, K\in T_k$, we have $\mathbb{P}\mu[F,K | G]=\mathbb{P}\mu[F|G]\cdot\mathbb{P}_\mu[K|G].$ We develop a new machinery with $\mathcal{C}$-Lorentzian polynomials to show that if all links of $X$ of co-dimension 2 have spectral expansion at most $1/2$, then $X$ is a $1/2$-local spectral expander. We then prove that one can derive fast-mixing results and log-concavity statements for top-link spectral expanders. We use our machinery to prove fast mixing results for sampling maximal flags of flats of distributive lattices (a.k.a. linear extensions of posets) subject to external fields, and to sample maximal flags of flats of "typical" modular lattices. We also use it to re-prove the Heron-Rota-Welsh conjecture and to prove a conjecture of Chan and Pak which gives a generalization of Stanley's log-concavity theorem. Lastly, we use it to prove near optimal trickle-down theorems for "sparse complexes" such as constructions by Lubotzky-Samuels-Vishne, Kaufman-Oppenheim, and O'Donnell-Pratt.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.