Papers
Topics
Authors
Recent
2000 character limit reached

Enhanced Multi-Class Classification of Gastrointestinal Endoscopic Images with Interpretable Deep Learning Model (2503.00780v1)

Published 2 Mar 2025 in cs.CV and cs.AI

Abstract: Endoscopy serves as an essential procedure for evaluating the gastrointestinal (GI) tract and plays a pivotal role in identifying GI-related disorders. Recent advancements in deep learning have demonstrated substantial progress in detecting abnormalities through intricate models and data augmentation methods.This research introduces a novel approach to enhance classification accuracy using 8,000 labeled endoscopic images from the Kvasir dataset, categorized into eight distinct classes. Leveraging EfficientNetB3 as the backbone, the proposed architecture eliminates reliance on data augmentation while preserving moderate model complexity. The model achieves a test accuracy of 94.25%, alongside precision and recall of 94.29% and 94.24% respectively. Furthermore, Local Interpretable Model-agnostic Explanation (LIME) saliency maps are employed to enhance interpretability by defining critical regions in the images that influenced model predictions. Overall, this work highlights the importance of AI in advancing medical imaging by combining high classification accuracy with interpretability.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.