Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Rethinking Light Decoder-based Solvers for Vehicle Routing Problems (2503.00753v1)

Published 2 Mar 2025 in cs.AI and cs.LG

Abstract: Light decoder-based solvers have gained popularity for solving vehicle routing problems (VRPs) due to their efficiency and ease of integration with reinforcement learning algorithms. However, they often struggle with generalization to larger problem instances or different VRP variants. This paper revisits light decoder-based approaches, analyzing the implications of their reliance on static embeddings and the inherent challenges that arise. Specifically, we demonstrate that in the light decoder paradigm, the encoder is implicitly tasked with capturing information for all potential decision scenarios during solution construction within a single set of embeddings, resulting in high information density. Furthermore, our empirical analysis reveals that the overly simplistic decoder struggles to effectively utilize this dense information, particularly as task complexity increases, which limits generalization to out-of-distribution (OOD) settings. Building on these insights, we show that enhancing the decoder capacity, with a simple addition of identity mapping and a feed-forward layer, can considerably alleviate the generalization issue. Experimentally, our method significantly enhances the OOD generalization of light decoder-based approaches on large-scale instances and complex VRP variants, narrowing the gap with the heavy decoder paradigm. Our code is available at: https://github.com/ziweileonhuang/reld-nco.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube