Exploring the Design Space of Real-time LLM Knowledge Support Systems: A Case Study of Jargon Explanations (2503.00715v1)
Abstract: Knowledge gaps often arise during communication due to diverse backgrounds, knowledge bases, and vocabularies. With recent LLM developments, providing real-time knowledge support is increasingly viable, but is challenging due to shared and individual cognitive limitations (e.g., attention, memory, and comprehension) and the difficulty in understanding the user's context and internal knowledge. To address these challenges, we explore the key question of understanding how people want to receive real-time knowledge support. We built StopGap -- a prototype that provides real-time knowledge support for explaining jargon words in videos -- to conduct a design probe study (N=24) that explored multiple visual knowledge representation formats. Our study revealed individual differences in preferred representations and highlighted the importance of user agency, personalization, and mixed-initiative assistance. Based on our findings, we map out six key design dimensions for real-time LLM knowledge support systems and offer insights for future research in this space.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.