Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Advancing Prompt-Based Methods for Replay-Independent General Continual Learning (2503.00677v1)

Published 2 Mar 2025 in cs.CV

Abstract: General continual learning (GCL) is a broad concept to describe real-world continual learning (CL) problems, which are often characterized by online data streams without distinct transitions between tasks, i.e., blurry task boundaries. Such requirements result in poor initial performance, limited generalizability, and severe catastrophic forgetting, heavily impacting the effectiveness of mainstream GCL models trained from scratch. While the use of a frozen pretrained backbone with appropriate prompt tuning can partially address these challenges, such prompt-based methods remain suboptimal for CL of remaining tunable parameters on the fly. In this regard, we propose an innovative approach named MISA (Mask and Initial Session Adaption) to advance prompt-based methods in GCL. It includes a forgetting-aware initial session adaption that employs pretraining data to initialize prompt parameters and improve generalizability, as well as a non-parametric logit mask of the output layers to mitigate catastrophic forgetting. Empirical results demonstrate substantial performance gains of our approach compared to recent competitors, especially without a replay buffer (e.g., up to 18.39%, 22.06%, and 11.96% performance lead on CIFAR-100, Tiny-ImageNet, and ImageNet-R, respectively). Moreover, our approach features the plug-in nature for prompt-based methods, independence of replay, ease of implementation, and avoidance of CL-relevant hyperparameters, serving as a strong baseline for GCL research. Our source code is publicly available at https://github.com/kangzhiq/MISA

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube