Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Secure Aggregation in Federated Learning using Multiparty Homomorphic Encryption (2503.00581v1)

Published 1 Mar 2025 in cs.CR

Abstract: A key operation in federated learning is the aggregation of gradient vectors generated by individual client nodes. We develop a method based on multiparty homomorphic encryption (MPHE) that enables the central node to compute this aggregate, while receiving only encrypted version of each individual gradients. Towards this end, we extend classical MPHE methods so that the decryption of the aggregate vector can be successful even when only a subset of client nodes are available. This is accomplished by introducing a secret-sharing step during the setup phase of MPHE when the public encryption key is generated. We develop conditions on the parameters of the MPHE scheme that guarantee correctness of decryption and (computational) security. We explain how our method can be extended to accommodate client nodes that do not participate during the setup phase. We also propose a compression scheme for gradient vectors at each client node that can be readily combined with our MPHE scheme and perform the associated convergence analysis. We discuss the advantages of our proposed scheme with other approaches based on secure multi-party computation. Finally we discuss a practical implementation of our system, compare the performance of our system with different approaches, and demonstrate that by suitably combining compression with encryption the overhead over baseline schemes is rather small.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube