Papers
Topics
Authors
Recent
2000 character limit reached

End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler (2503.00524v1)

Published 1 Mar 2025 in cs.LG, cs.AI, and stat.ML

Abstract: Diffusion models optimized via variational inference (VI) have emerged as a promising tool for generating samples from unnormalized target densities. These models create samples by simulating a stochastic differential equation, starting from a simple, tractable prior, typically a Gaussian distribution. However, when the support of this prior differs greatly from that of the target distribution, diffusion models often struggle to explore effectively or suffer from large discretization errors. Moreover, learning the prior distribution can lead to mode-collapse, exacerbated by the mode-seeking nature of reverse Kullback-Leibler divergence commonly used in VI. To address these challenges, we propose end-to-end learnable Gaussian mixture priors (GMPs). GMPs offer improved control over exploration, adaptability to target support, and increased expressiveness to counteract mode collapse. We further leverage the structure of mixture models by proposing a strategy to iteratively refine the model by adding mixture components during training. Our experimental results demonstrate significant performance improvements across a diverse range of real-world and synthetic benchmark problems when using GMPs without requiring additional target evaluations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.