Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Conditioning on Local Statistics for Scalable Heterogeneous Federated Learning (2503.00378v1)

Published 1 Mar 2025 in cs.LG, cs.AI, cs.CR, and cs.DC

Abstract: Federated learning is a distributed machine learning approach where multiple clients collaboratively train a model without sharing their local data, which contributes to preserving privacy. A challenge in federated learning is managing heterogeneous data distributions across clients, which can hinder model convergence and performance due to the need for the global model to generalize well across diverse local datasets. We propose to use local characteristic statistics, by which we mean some statistical properties calculated independently by each client using only their local training dataset. These statistics, such as means, covariances, and higher moments, are used to capture the characteristics of the local data distribution. They are not shared with other clients or a central node. During training, these local statistics help the model learn how to condition on the local data distribution, and during inference, they guide the client's predictions. Our experiments show that this approach allows for efficient handling of heterogeneous data across the federation, has favorable scaling compared to approaches that directly try to identify peer nodes that share distribution characteristics, and maintains privacy as no additional information needs to be communicated.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: