Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Seeing Eye to AI? Applying Deep-Feature-Based Similarity Metrics to Information Visualization (2503.00228v1)

Published 28 Feb 2025 in cs.HC, cs.CV, and cs.LG

Abstract: Judging the similarity of visualizations is crucial to various applications, such as visualization-based search and visualization recommendation systems. Recent studies show deep-feature-based similarity metrics correlate well with perceptual judgments of image similarity and serve as effective loss functions for tasks like image super-resolution and style transfer. We explore the application of such metrics to judgments of visualization similarity. We extend a similarity metric using five ML architectures and three pre-trained weight sets. We replicate results from previous crowd-sourced studies on scatterplot and visual channel similarity perception. Notably, our metric using pre-trained ImageNet weights outperformed gradient-descent tuned MS-SSIM, a multi-scale similarity metric based on luminance, contrast, and structure. Our work contributes to understanding how deep-feature-based metrics can enhance similarity assessments in visualization, potentially improving visual analysis tools and techniques. Supplementary materials are available at https://osf.io/dj2ms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.