Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 136 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Streaming Looking Ahead with Token-level Self-reward (2503.00029v1)

Published 24 Feb 2025 in cs.LG and cs.AI

Abstract: Autoregressive decoding algorithms that use only past information often cannot guarantee the best performance. Recently, people discovered that looking-ahead algorithms such as Monte Carlo Tree Search (MCTS) with external reward models (RMs) can significantly improve models' output by allowing them to think ahead and leverage future outputs and associated rewards to guide the current generation. Such techniques can help the reinforcement fine-tuning phase by sampling better trajectories and the inference phase by selecting the better output. However, their high computational cost limits their applications, especially in streaming scenarios. To address this issue, we propose equipping the policy model with token-level self-reward modeling (TRM) capability to eliminate the need for external models and extra communication. We name the new architecture as Reward Transformer. In addition, we propose a streaming-looking-ahead (SLA) algorithm to further boost search efficiency with better parallelization. Experiments show that SLA achieves an overall win rate of 79.7\% against the baseline greedy decoding algorithm on three general-domain datasets with a frozen policy model while maintaining streaming efficiency. If we combine SLA with reinforcement fine-tuning techniques such as DPO, SLA achieves an overall win rate of 89.4\%.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube