Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

LarQucut: A New Cutting and Mapping Approach for Large-sized Quantum Circuits in Distributed Quantum Computing (DQC) Environments (2502.21000v1)

Published 28 Feb 2025 in quant-ph and cs.AR

Abstract: Distributed quantum computing (DQC) is a promising way to achieve large-scale quantum computing. However, mapping large-sized quantum circuits in DQC is a challenging job; for example, it is difficult to find an ideal cutting and mapping solution when many qubits, complicated qubit operations, and diverse QPUs are involved. In this study, we propose LarQucut, a new quantum circuit cutting and mapping approach for large-sized circuits in DQC. LarQucut has several new designs. (1) LarQucut can have cutting solutions that use fewer cuts, and it does not cut a circuit into independent sub-circuits, therefore reducing the overall cutting and computing overheads. (2) LarQucut finds isomorphic sub-circuits and reuses their execution results. So, LarQucut can reduce the number of sub-circuits that need to be executed to reconstruct the large circuit's output, reducing the time spent on sampling the sub-circuits. (3) We design an adaptive quantum circuit mapping approach, which identifies qubit interaction patterns and accordingly enables the best-fit mapping policy in DQC. The experimental results show that, for large circuits with hundreds to thousands of qubits in DQC, LarQucut can provide a better cutting and mapping solution with lower overall overheads and achieves results closer to the ground truth.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube