Towards Distributed Quantum Computing by Qubit and Gate Graph Partitioning Techniques (2310.03942v1)
Abstract: Distributed quantum computing is motivated by the difficulty in building large-scale, individual quantum computers. To solve that problem, a large quantum circuit is partitioned and distributed to small quantum computers for execution. Partitions running on different quantum computers share quantum information using entangled Bell pairs. However, entanglement generation and purification introduces both a runtime and memory overhead on distributed quantum computing. In this paper we study that trade-off by proposing two techniques for partitioning large quantum circuits and for distribution to small quantum computers. Our techniques map a quantum circuit to a graph representation. We study two approaches: one that considers only gate teleportation, and another that considers both gate and state teleportation to achieve the distributed execution. Then we apply the METIS graph partitioning algorithm to obtain the partitions and the number of entanglement requests between them. We use the SeQUeNCe quantum communication simulator to measure the time required for generating all the entanglements required to execute the distributed circuit. We find that the best partitioning technique will depend on the specific circuit of interest.
- D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, “Development of quantum interconnects (quics) for next-generation information technologies,” PRX Quantum, vol. 2, p. 017002, Feb 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PRXQuantum.2.017002
- J. Gambetta, “Expanding the ibm quantum roadmap to anticipate the future of quantum-centric supercomputing,” https://research.ibm.com/blog/ibm-quantum-roadmap-2025.
- T. Ogoshi, “Networked quantum computers: Ionq acquires assets of entangled networks,” https://ionq.com/news/networked-quantum-computers-ionq-acquires-assets-of-entangled-networks.
- A. Yimsiriwattana and S. J. L. Jr., “Distributed quantum computing: a distributed Shor algorithm,” in Quantum Information and Computation II, E. Donkor, A. R. Pirich, and H. E. Brandt, Eds., vol. 5436, International Society for Optics and Photonics. SPIE, 2004, pp. 360 – 372. [Online]. Available: https://doi.org/10.1117/12.546504
- R. Van Meter and S. J. Devitt, “The path to scalable distributed quantum computing,” Computer, vol. 49, no. 9, pp. 31–42, 2016.
- M. Caleffi, M. Amoretti, D. Ferrari, D. Cuomo, J. Illiano, A. Manzalini, and A. S. Cacciapuoti, “Distributed quantum computing: a survey,” 2022. [Online]. Available: https://arxiv.org/abs/2212.10609
- J. Chung, E. M. Eastman, G. S. Kanter, K. Kapoor, N. Lauk, C. Peña, R. K. Plunkett, N. Sinclair, J. M. Thomas, R. Valivarthi, S. Xie, R. Kettimuthu, P. Kumar, P. Spentzouris, and M. Spiropulu, “Design and implementation of the illinois express quantum metropolitan area network,” IEEE Transactions on Quantum Engineering, pp. 1–20, 2022.
- M. Pompili, C. Delle Donne, I. te Raa, B. van der Vecht, M. Skrzypczyk, G. Ferreira, L. de Kluijver, A. J. Stolk, S. L. Hermans, P. Pawełczak et al., “Experimental demonstration of entanglement delivery using a quantum network stack,” npj Quantum Information, vol. 8, no. 1, p. 121, 2022.
- P. Andrés-Martínez and C. Heunen, “Automated distribution of quantum circuits via hypergraph partitioning,” Phys. Rev. A, vol. 100, p. 032308, Sep 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.100.032308
- X. Wu, A. Kolar, J. Chung, D. Jin, T. Zhong, R. Kettimuthu, and M. Suchara, “SeQUeNCe: A customizable discrete-event simulator of quantum networks,” Quantum Science and Technology, vol. 6, no. 4, p. 045027, 2021. [Online]. Available: https://doi.org/10.1088/2058-9565/ac22f6
- G. Karypis, “METIS - serial graph partitioning and fill-reducing matrix ordering,” http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.
- S. Krastanov, H. Raniwala, J. Holzgrafe, K. Jacobs, M. Lončar, M. J. Reagor, and D. R. Englund, “Optically heralded entanglement of superconducting systems in quantum networks,” Phys. Rev. Lett., vol. 127, p. 040503, Jul 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.127.040503
- C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Physical Review Letters, vol. 76, no. 5, p. 722, 1996.
- K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, “Deterministic teleportation of a quantum gate between two logical qubits,” Nature, vol. 561, 09 2018.
- J. Eisert, K. Jacobs, P. Papadopoulos, and M. B. Plenio, “Optimal local implementation of nonlocal quantum gates,” Phys. Rev. A, vol. 62, p. 052317, Oct 2000. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.62.052317
- G. repository. (2020) SeQUeNCe: Simulator of QUantum Network Communication. [Online]. Available: https://github.com/sequence-toolbox/SeQUeNCe/tree/parallel
- Marc Grau Davis (3 papers)
- Joaquin Chung (21 papers)
- Dirk Englund (182 papers)
- Rajkumar Kettimuthu (32 papers)