Papers
Topics
Authors
Recent
2000 character limit reached

Set-Theoretic Compositionality of Sentence Embeddings (2502.20975v1)

Published 28 Feb 2025 in cs.CL

Abstract: Sentence encoders play a pivotal role in various NLP tasks; hence, an accurate evaluation of their compositional properties is paramount. However, existing evaluation methods predominantly focus on goal task-specific performance. This leaves a significant gap in understanding how well sentence embeddings demonstrate fundamental compositional properties in a task-independent context. Leveraging classical set theory, we address this gap by proposing six criteria based on three core "set-like" compositions/operations: \textit{TextOverlap}, \textit{TextDifference}, and \textit{TextUnion}. We systematically evaluate $7$ classical and $9$ LLM-based sentence encoders to assess their alignment with these criteria. Our findings show that SBERT consistently demonstrates set-like compositional properties, surpassing even the latest LLMs. Additionally, we introduce a new dataset of ~$192$K samples designed to facilitate future benchmarking efforts on set-like compositionality of sentence embeddings.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.