Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Characteristics Analysis of Autonomous Vehicle Pre-crash Scenarios (2502.20789v1)

Published 28 Feb 2025 in cs.RO and cs.AI

Abstract: To date, hundreds of crashes have occurred in open road testing of automated vehicles (AVs), highlighting the need for improving AV reliability and safety. Pre-crash scenario typology classifies crashes based on vehicle dynamics and kinematics features. Building on this, characteristics analysis can identify similar features under comparable crashes, offering a more effective reflection of general crash patterns and providing more targeted recommendations for enhancing AV performance. However, current studies primarily concentrated on crashes among conventional human-driven vehicles, leaving a gap in research dedicated to in-depth AV crash analyses. In this paper, we analyzed the latest California AV collision reports and used the newly revised pre-crash scenario typology to identify pre-crash scenarios. We proposed a set of mapping rules for automatically extracting these AV pre-crash scenarios, successfully identifying 24 types with a 98.1% accuracy rate, and obtaining two key scenarios of AV crashes (i.e., rear-end scenarios and intersection scenarios) through detailed analysis. Association analyses of rear-end scenarios showed that the significant environmental influencing factors were traffic control type, location type, light, etc. For intersection scenarios prone to severe crashes with detailed descriptions, we employed causal analyses to obtain the significant causal factors: habitual violations and expectations of certain behavior. Optimization recommendations were then formulated, addressing both governmental oversight and AV manufacturers' potential improvements. The findings of this paper could guide government authorities to develop related regulations, help manufacturers design AV test scenarios, and identify potential shortcomings in control algorithms specific to various real-world scenarios, thereby optimizing AV systems effectively.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube