Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Prediction of Item Difficulty for Reading Comprehension Items by Creation of Annotated Item Repository (2502.20663v1)

Published 28 Feb 2025 in cs.CL

Abstract: Prediction of item difficulty based on its text content is of substantial interest. In this paper, we focus on the related problem of recovering IRT-based difficulty when the data originally reported item p-value (percent correct responses). We model this item difficulty using a repository of reading passages and student data from US standardized tests from New York and Texas for grades 3-8 spanning the years 2017-23. This repository is annotated with meta-data on (1) linguistic features of the reading items, (2) test features of the passage, and (3) context features. A penalized regression prediction model with all these features can predict item difficulty with RMSE 0.52 compared to baseline RMSE of 0.92, and with a correlation of 0.77 between true and predicted difficulty. We supplement these features with embeddings from LLMs (ModernBERT, BERT, and LlAMA), which marginally improve item difficulty prediction. When models use only item linguistic features or LLM embeddings, prediction performance is similar, which suggests that only one of these feature categories may be required. This item difficulty prediction model can be used to filter and categorize reading items and will be made publicly available for use by other stakeholders.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube