Papers
Topics
Authors
Recent
2000 character limit reached

Explainable physics-based constraints on reinforcement learning for accelerator controls (2502.20247v2)

Published 27 Feb 2025 in physics.acc-ph

Abstract: We present a reinforcement learning (RL) framework for controlling particle accelerator experiments that builds explainable physics-based constraints on agent behavior. The goal is to increase transparency and trust by letting users verify that the agent's decision-making process incorporates suitable physics. Our algorithm uses a learnable surrogate function for physical observables, such as energy, and uses them to fine-tune how actions are chosen. This surrogate can be represented by a neural network or by an interpretable sparse dictionary model. We test our algorithm on a range of particle accelerator controls environments designed to emulate the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. By examining the mathematical form of the learned constraint function, we are able to confirm the agent has learned to use the established physics of each environment. In addition, we find that the introduction of a physics-based surrogate enables our reinforcement learning algorithms to reliably converge for difficult high-dimensional accelerator controls environments.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.