Papers
Topics
Authors
Recent
2000 character limit reached

At most n-valued maps (2502.20164v1)

Published 27 Feb 2025 in math.GN

Abstract: This paper concerns various models of ``at-most-$n$-valued maps''. That is, multivalued maps $f:X\multimap Y$ for which $f(x)$ has cardinality at most $n$ for each $x$. We consider 4 classes of such maps which have appeared in the literature: $\mathcal U$, the set of exactly $n$-valued maps, or unions of such; $\mathcal F$, the set of $n$-fold maps defined by Crabb; $\mathcal S$, the set of symmetric product maps; and $\mathcal W$, the set of weighted maps with weights in $\mathbb N$. Our main result is roughly that these classes satisfy the following containments: [ \mathcal U \subsetneq \mathcal F \subsetneq \mathcal S = \mathcal W ] Furthermore we define the general class $\mathcal C$ of all at-most-$n$-valued maps, and show that there are maps in $\mathcal C$ which are outside of any of the other classes above. We also describe a configuration-space point of view for the class $\mathcal C$, defining a configuration space $C_n(Y)$ such that any at-most-$n$-valued map $f:X\multimap Y$ corresponds naturally to a single-valued map $f:X\to C_n(Y)$. We give a full calculation of the fundamental group and homology groups of $C_n(S1)$.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com