Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

RIZE: Regularized Imitation Learning via Distributional Reinforcement Learning (2502.20089v1)

Published 27 Feb 2025 in cs.LG, cs.AI, and cs.RO

Abstract: We introduce a novel Inverse Reinforcement Learning (IRL) approach that overcomes limitations of fixed reward assignments and constrained flexibility in implicit reward regularization. By extending the Maximum Entropy IRL framework with a squared temporal-difference (TD) regularizer and adaptive targets, dynamically adjusted during training, our method indirectly optimizes a reward function while incorporating reinforcement learning principles. Furthermore, we integrate distributional RL to capture richer return information. Our approach achieves state-of-the-art performance on challenging MuJoCo tasks, demonstrating expert-level results on the Humanoid task with only 3 demonstrations. Extensive experiments and ablation studies validate the effectiveness of our method, providing insights into adaptive targets and reward dynamics in imitation learning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.