Papers
Topics
Authors
Recent
2000 character limit reached

FuseGrasp: Radar-Camera Fusion for Robotic Grasping of Transparent Objects

Published 27 Feb 2025 in cs.RO | (2502.20037v2)

Abstract: Transparent objects are prevalent in everyday environments, but their distinct physical properties pose significant challenges for camera-guided robotic arms. Current research is mainly dependent on camera-only approaches, which often falter in suboptimal conditions, such as low-light environments. In response to this challenge, we present FuseGrasp, the first radar-camera fusion system tailored to enhance the transparent objects manipulation. FuseGrasp exploits the weak penetrating property of millimeter-wave (mmWave) signals, which causes transparent materials to appear opaque, and combines it with the precise motion control of a robotic arm to acquire high-quality mmWave radar images of transparent objects. The system employs a carefully designed deep neural network to fuse radar and camera imagery, thereby improving depth completion and elevating the success rate of object grasping. Nevertheless, training FuseGrasp effectively is non-trivial, due to limited radar image datasets for transparent objects. We address this issue utilizing large RGB-D dataset, and propose an effective two-stage training approach: we first pre-train FuseGrasp on a large public RGB-D dataset of transparent objects, then fine-tune it on a self-built small RGB-D-Radar dataset. Furthermore, as a byproduct, FuseGrasp can determine the composition of transparent objects, such as glass or plastic, leveraging the material identification capability of mmWave radar. This identification result facilitates the robotic arm in modulating its grip force appropriately. Extensive testing reveals that FuseGrasp significantly improves the accuracy of depth reconstruction and material identification for transparent objects. Moreover, real-world robotic trials have confirmed that FuseGrasp markedly enhances the handling of transparent items. A video demonstration of FuseGrasp is available at https://youtu.be/MWDqv0sRSok.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.