Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On Piecewise Affine Reachability with Bellman Operators (2502.19923v2)

Published 27 Feb 2025 in cs.DM, cs.LO, and math.DS

Abstract: A piecewise affine map is one of the simplest mathematical objects exhibiting complex dynamics. The reachability problem of piecewise affine maps is as follows: Given two vectors $\mathbf{s}, \mathbf{t} \in \mathbb{Q}d$ and a piecewise affine map $f$, is there $n\in \mathbb{N}$ such that $f{n}(\mathbf{s}) = \mathbf{t}$? Koiran, Cosnard, and Garzon show that the reachability problem of piecewise affine maps is undecidable even in dimension 2. Most of the recent progress has been focused on decision procedures for one-dimensional piecewise affine maps, where the reachability problem has been shown to be decidable for some subclasses. However, the general undecidability discouraged research into positive results in arbitrary dimension. In this work, we investigate a rich subclass of piecewise affine maps arising as Bellman operators of Markov decision processes (MDPs). We consider the reachability problem restricted to this subclass and examine its decidability in arbitrary dimensions. We establish that the reachability problem for Bellman operators is decidable in any dimension under either of the following conditions (i) the target vector $\mathbf{t}$ is not the fixed point of the operator $f$; or (ii) the initial and target vectors $\mathbf{s}$ and $\mathbf{t}$ are comparable with respect to the componentwise order. Furthermore, we show that the reachability problem for two-dimensional Bellman operators is decidable for arbitrary $\mathbf{s}, \mathbf{t}\in \mathbb{Q}d$, in contrast to the known undecidability of reachability for general piecewise affine maps.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.