Twofold Debiasing Enhances Fine-Grained Learning with Coarse Labels (2502.19816v1)
Abstract: The Coarse-to-Fine Few-Shot (C2FS) task is designed to train models using only coarse labels, then leverages a limited number of subclass samples to achieve fine-grained recognition capabilities. This task presents two main challenges: coarse-grained supervised pre-training suppresses the extraction of critical fine-grained features for subcategory discrimination, and models suffer from overfitting due to biased distributions caused by limited fine-grained samples. In this paper, we propose the Twofold Debiasing (TFB) method, which addresses these challenges through detailed feature enhancement and distribution calibration. Specifically, we introduce a multi-layer feature fusion reconstruction module and an intermediate layer feature alignment module to combat the model's tendency to focus on simple predictive features directly related to coarse-grained supervision, while neglecting complex fine-grained level details. Furthermore, we mitigate the biased distributions learned by the fine-grained classifier using readily available coarse-grained sample embeddings enriched with fine-grained information. Extensive experiments conducted on five benchmark datasets demonstrate the efficacy of our approach, achieving state-of-the-art results that surpass competitive methods.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.