Papers
Topics
Authors
Recent
2000 character limit reached

Twofold Debiasing Enhances Fine-Grained Learning with Coarse Labels (2502.19816v1)

Published 27 Feb 2025 in cs.CV

Abstract: The Coarse-to-Fine Few-Shot (C2FS) task is designed to train models using only coarse labels, then leverages a limited number of subclass samples to achieve fine-grained recognition capabilities. This task presents two main challenges: coarse-grained supervised pre-training suppresses the extraction of critical fine-grained features for subcategory discrimination, and models suffer from overfitting due to biased distributions caused by limited fine-grained samples. In this paper, we propose the Twofold Debiasing (TFB) method, which addresses these challenges through detailed feature enhancement and distribution calibration. Specifically, we introduce a multi-layer feature fusion reconstruction module and an intermediate layer feature alignment module to combat the model's tendency to focus on simple predictive features directly related to coarse-grained supervision, while neglecting complex fine-grained level details. Furthermore, we mitigate the biased distributions learned by the fine-grained classifier using readily available coarse-grained sample embeddings enriched with fine-grained information. Extensive experiments conducted on five benchmark datasets demonstrate the efficacy of our approach, achieving state-of-the-art results that surpass competitive methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.