Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Time-Varying Identification of Structural Vector Autoregressions (2502.19659v1)

Published 27 Feb 2025 in econ.EM

Abstract: We propose a novel Bayesian heteroskedastic Markov-switching structural vector autoregression with data-driven time-varying identification. The model selects among alternative patterns of exclusion restrictions to identify structural shocks within the Markov process regimes. We implement the selection through a multinomial prior distribution over these patterns, which is a spike'n'slab prior for individual parameters. By combining a Markov-switching structural matrix with heteroskedastic structural shocks following a stochastic volatility process, the model enables shock identification through time-varying volatility within a regime. As a result, the exclusion restrictions become over-identifying, and their selection is driven by the signal from the data. Our empirical application shows that data support time variation in the US monetary policy shock identification. We also verify that time-varying volatility identifies the monetary policy shock within the regimes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.