Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Consistent Amortized Clustering via Generative Flow Networks (2502.19337v1)

Published 26 Feb 2025 in cs.LG and cs.CV

Abstract: Neural models for amortized probabilistic clustering yield samples of cluster labels given a set-structured input, while avoiding lengthy Markov chain runs and the need for explicit data likelihoods. Existing methods which label each data point sequentially, like the Neural Clustering Process, often lead to cluster assignments highly dependent on the data order. Alternatively, methods that sequentially create full clusters, do not provide assignment probabilities. In this paper, we introduce GFNCP, a novel framework for amortized clustering. GFNCP is formulated as a Generative Flow Network with a shared energy-based parametrization of policy and reward. We show that the flow matching conditions are equivalent to consistency of the clustering posterior under marginalization, which in turn implies order invariance. GFNCP also outperforms existing methods in clustering performance on both synthetic and real-world data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: