Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

QueryAdapter: Rapid Adaptation of Vision-Language Models in Response to Natural Language Queries (2502.18735v1)

Published 26 Feb 2025 in cs.RO and cs.CV

Abstract: A domain shift exists between the large-scale, internet data used to train a Vision-LLM (VLM) and the raw image streams collected by a robot. Existing adaptation strategies require the definition of a closed-set of classes, which is impractical for a robot that must respond to diverse natural language queries. In response, we present QueryAdapter; a novel framework for rapidly adapting a pre-trained VLM in response to a natural language query. QueryAdapter leverages unlabelled data collected during previous deployments to align VLM features with semantic classes related to the query. By optimising learnable prompt tokens and actively selecting objects for training, an adapted model can be produced in a matter of minutes. We also explore how objects unrelated to the query should be dealt with when using real-world data for adaptation. In turn, we propose the use of object captions as negative class labels, helping to produce better calibrated confidence scores during adaptation. Extensive experiments on ScanNet++ demonstrate that QueryAdapter significantly enhances object retrieval performance compared to state-of-the-art unsupervised VLM adapters and 3D scene graph methods. Furthermore, the approach exhibits robust generalization to abstract affordance queries and other datasets, such as Ego4D.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.