You Shall Not Pass: Warning Drivers of Unsafe Overtaking Maneuvers on Country Roads by Predicting Safe Sight Distance (2502.18163v1)
Abstract: Overtaking on country roads with possible opposing traffic is a dangerous maneuver and many proposed assistant systems assume car-to-car communication and sensors currently unavailable in cars. To overcome this limitation, we develop an assistant that uses simple in-car sensors to predict the required sight distance for safe overtaking. Our models predict this from vehicle speeds, accelerations, and 3D map data. In a user study with a Virtual Reality driving simulator (N=25), we compare two UI variants (monitoring-focused vs scheduling-focused). The results reveal that both UIs enable more patient driving and thus increase overall driving safety. While the monitoring-focused UI achieves higher System Usability Score and distracts drivers less, the preferred UI depends on personal preference. Driving data shows predictions were off at times. We investigate and discuss this in a comparison of our models to actual driving behavior and identify crucial model parameters and assumptions that significantly improve model predictions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.