Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Controlling dynamics of stochastic systems with deep reinforcement learning (2502.18111v1)

Published 25 Feb 2025 in cond-mat.stat-mech, cs.LG, and physics.comp-ph

Abstract: A properly designed controller can help improve the quality of experimental measurements or force a dynamical system to follow a completely new time-evolution path. Recent developments in deep reinforcement learning have made steep advances toward designing effective control schemes for fairly complex systems. However, a general simulation scheme that employs deep reinforcement learning for exerting control in stochastic systems is yet to be established. In this paper, we attempt to further bridge a gap between control theory and deep reinforcement learning by proposing a simulation algorithm that allows achieving control of the dynamics of stochastic systems through the use of trained artificial neural networks. Specifically, we use agent-based simulations where the neural network plays the role of the controller that drives local state-to-state transitions. We demonstrate the workflow and the effectiveness of the proposed control methods by considering the following two stochastic processes: particle coalescence on a lattice and a totally asymmetric exclusion process.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.