Papers
Topics
Authors
Recent
2000 character limit reached

Uncertainty Quantification for LLM-Based Survey Simulations (2502.17773v3)

Published 25 Feb 2025 in stat.ME, cs.AI, and cs.LG

Abstract: We investigate the use of LLMs to simulate human responses to survey questions, and perform uncertainty quantification to gain reliable insights. Our approach converts imperfect LLM-simulated responses into confidence sets for population parameters of human responses, addressing the distribution shift between the simulated and real populations. A key innovation lies in determining the optimal number of simulated responses: too many produce overly narrow confidence sets with poor coverage, while too few yield excessively loose estimates. To resolve this, our method adaptively selects the simulation sample size, ensuring valid average-case coverage guarantees. It is broadly applicable to any LLM, irrespective of its fidelity, and any procedure for constructing confidence sets. Additionally, the selected sample size quantifies the degree of misalignment between the LLM and the target human population. We illustrate our method on real datasets and LLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.