Papers
Topics
Authors
Recent
2000 character limit reached

Studying How Configurations Impact Code Generation in LLMs: the Case of ChatGPT (2502.17450v1)

Published 7 Feb 2025 in cs.SE

Abstract: Leveraging LLMs for code generation is becoming increasingly common, as tools like ChatGPT can suggest method implementations with minimal input, such as a method signature and brief description. Empirical studies further highlight the effectiveness of LLMs in handling such tasks, demonstrating notable performance in code generation scenarios. However, LLMs are inherently non-deterministic, with their output influenced by parameters such as temperature, which regulates the model's level of creativity, and top-p, which controls the choice of the tokens that shall appear in the output. Despite their significance, the role of these parameters is often overlooked. This paper systematically studies the impact of these parameters, as well as the number of prompt repetitions required to account for non-determinism, in the context of 548 Java methods. We observe significantly different performances across different configurations of ChatGPT, with temperature having a marginal impact compared to the more prominent influence of the top-p parameter. Additionally, we show how creativity can enhance code generation tasks. Finally, we provide concrete recommendations for addressing the non-determinism of the model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.