Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Evaluating Expert Contributions in a MoE LLM for Quiz-Based Tasks (2502.17187v1)

Published 24 Feb 2025 in cs.CL and cs.AI

Abstract: Recently, LLMs with Mixture of Experts (MoE) layers have gained significant attention. Currently, state-of-the-art LLMs utilize this architecture. There is a substantial amount of research on how to train such models and how to select hyperparameters for this architecture. However, there is a lack of studies focusing on post-evaluation analysis of MoE layer properties. In this paper, we take a first step toward closing this gap by evaluating expert contributions on the quiz-based MMLU benchmark. We show that most experts were never activated during inference on this benchmark. Additionally, the output distribution of gating networks is much closer to uniform than sparse. Finally, we demonstrate that the average performance of some experts within the same layer varies significantly.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.