Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-Dimensional Quality Assessment for Text-to-3D Assets: Dataset and Model (2502.16915v1)

Published 24 Feb 2025 in cs.CV

Abstract: Recent advancements in text-to-image (T2I) generation have spurred the development of text-to-3D asset (T23DA) generation, leveraging pretrained 2D text-to-image diffusion models for text-to-3D asset synthesis. Despite the growing popularity of text-to-3D asset generation, its evaluation has not been well considered and studied. However, given the significant quality discrepancies among various text-to-3D assets, there is a pressing need for quality assessment models aligned with human subjective judgments. To tackle this challenge, we conduct a comprehensive study to explore the T23DA quality assessment (T23DAQA) problem in this work from both subjective and objective perspectives. Given the absence of corresponding databases, we first establish the largest text-to-3D asset quality assessment database to date, termed the AIGC-T23DAQA database. This database encompasses 969 validated 3D assets generated from 170 prompts via 6 popular text-to-3D asset generation models, and corresponding subjective quality ratings for these assets from the perspectives of quality, authenticity, and text-asset correspondence, respectively. Subsequently, we establish a comprehensive benchmark based on the AIGC-T23DAQA database, and devise an effective T23DAQA model to evaluate the generated 3D assets from the aforementioned three perspectives, respectively.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.