ENACT-Heart -- ENsemble-based Assessment Using CNN and Transformer on Heart Sounds (2502.16914v1)
Abstract: This study explores the application of Vision Transformer (ViT) principles in audio analysis, specifically focusing on heart sounds. This paper introduces ENACT-Heart - a novel ensemble approach that leverages the complementary strengths of Convolutional Neural Networks (CNN) and ViT through a Mixture of Experts (MoE) framework, achieving a remarkable classification accuracy of 97.52%. This outperforms the individual contributions of ViT (93.88%) and CNN (95.45%), demonstrating the potential for enhanced diagnostic accuracy in cardiovascular health monitoring. These results demonstrate the potential of ensemble methods in enhancing classification performance for cardiovascular health monitoring and diagnosis.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.