Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Active Learning Classification from a Signal Separation Perspective (2502.16425v1)

Published 23 Feb 2025 in cs.LG and math.OC

Abstract: In machine learning, classification is usually seen as a function approximation problem, where the goal is to learn a function that maps input features to class labels. In this paper, we propose a novel clustering and classification framework inspired by the principles of signal separation. This approach enables efficient identification of class supports, even in the presence of overlapping distributions. We validate our method on real-world hyperspectral datasets Salinas and Indian Pines. The experimental results demonstrate that our method is competitive with the state of the art active learning algorithms by using a very small subset of data set as training points.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.