Papers
Topics
Authors
Recent
2000 character limit reached

FedNIA: Noise-Induced Activation Analysis for Mitigating Data Poisoning in FL (2502.16396v1)

Published 23 Feb 2025 in cs.LG, cs.AI, and cs.CR

Abstract: Federated learning systems are increasingly threatened by data poisoning attacks, where malicious clients compromise global models by contributing tampered updates. Existing defenses often rely on impractical assumptions, such as access to a central test dataset, or fail to generalize across diverse attack types, particularly those involving multiple malicious clients working collaboratively. To address this, we propose Federated Noise-Induced Activation Analysis (FedNIA), a novel defense framework to identify and exclude adversarial clients without relying on any central test dataset. FedNIA injects random noise inputs to analyze the layerwise activation patterns in client models leveraging an autoencoder that detects abnormal behaviors indicative of data poisoning. FedNIA can defend against diverse attack types, including sample poisoning, label flipping, and backdoors, even in scenarios with multiple attacking nodes. Experimental results on non-iid federated datasets demonstrate its effectiveness and robustness, underscoring its potential as a foundational approach for enhancing the security of federated learning systems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.