A Framework for Evaluating Vision-Language Model Safety: Building Trust in AI for Public Sector Applications (2502.16361v1)
Abstract: Vision-LLMs (VLMs) are increasingly deployed in public sector missions, necessitating robust evaluation of their safety and vulnerability to adversarial attacks. This paper introduces a novel framework to quantify adversarial risks in VLMs. We analyze model performance under Gaussian, salt-and-pepper, and uniform noise, identifying misclassification thresholds and deriving composite noise patches and saliency patterns that highlight vulnerable regions. These patterns are compared against the Fast Gradient Sign Method (FGSM) to assess their adversarial effectiveness. We propose a new Vulnerability Score that combines the impact of random noise and adversarial attacks, providing a comprehensive metric for evaluating model robustness.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.