Papers
Topics
Authors
Recent
2000 character limit reached

Revealing Microscopic Objects in Fluorescence Live Imaging by Video-to-video Translation Based on A Spatial-temporal Generative Adversarial Network (2502.16342v1)

Published 22 Feb 2025 in eess.IV and cs.CV

Abstract: In spite of being a valuable tool to simultaneously visualize multiple types of subcellular structures using spectrally distinct fluorescent labels, a standard fluoresce microscope is only able to identify a few microscopic objects; such a limit is largely imposed by the number of fluorescent labels available to the sample. In order to simultaneously visualize more objects, in this paper, we propose to use video-to-video translation that mimics the development process of microscopic objects. In essence, we use a microscopy video-to-video translation framework namely Spatial-temporal Generative Adversarial Network (STGAN) to reveal the spatial and temporal relationships between the microscopic objects, after which a microscopy video of one object can be translated to another object in a different domain. The experimental results confirm that the proposed STGAN is effective in microscopy video-to-video translation that mitigates the spectral conflicts caused by the limited fluorescent labels, allowing multiple microscopic objects be simultaneously visualized.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.