Papers
Topics
Authors
Recent
2000 character limit reached

A Generalisation of Ville's Inequality to Monotonic Lower Bounds and Thresholds (2502.16019v1)

Published 22 Feb 2025 in math.ST, math.PR, and stat.TH

Abstract: Essentially all anytime-valid methods hinge on Ville's inequality to gain validity across time without incurring a union bound. Ville's inequality is a proper generalisation of Markov's inequality. It states that a non-negative supermartingale will only ever reach a multiple of its initial value with small probability. In the classic rendering both the lower bound (of zero) and the threshold are constant in time. We generalise both to monotonic curves. That is, we bound the probability that a supermartingale which remains above a given decreasing curve exceeds a given increasing threshold curve. We show our bound is tight by exhibiting a supermartingale for which the bound is an equality. Using our generalisation, we derive a clean finite-time version of the law of the iterated logarithm.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 5 likes about this paper.