Deep Reinforcement Learning-Based Bidding Strategies for Prosumers Trading in Double Auction-Based Transactive Energy Market (2502.15774v1)
Abstract: With the large number of prosumers deploying distributed energy resources (DERs), integrating these prosumers into a transactive energy market (TEM) is a trend for the future smart grid. A community-based double auction market is considered a promising TEM that can encourage prosumers to participate and maximize social welfare. However, the traditional TEM is challenging to model explicitly due to the random bidding behavior of prosumers and uncertainties caused by the energy operation of DERs. Furthermore, although reinforcement learning algorithms provide a model-free solution to optimize prosumers' bidding strategies, their use in TEM is still challenging due to their scalability, stability, and privacy protection limitations. To address the above challenges, in this study, we design a double auction-based TEM with multiple DERs-equipped prosumers to transparently and efficiently manage energy transactions. We also propose a deep reinforcement learning (DRL) model with distributed learning and execution to ensure the scalability and privacy of the market environment. Additionally, the design of two bidding actions (i.e., bidding price and quantity) optimizes the bidding strategies for prosumers. Simulation results show that (1) the designed TEM and DRL model are robust; (2) the proposed DRL model effectively balances the energy payment and comfort satisfaction for prosumers and outperforms the state-of-the-art methods in optimizing the bidding strategies.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.