Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Universality of High-Dimensional Logistic Regression and a Novel CGMT under Dependence with Applications to Data Augmentation (2502.15752v2)

Published 10 Feb 2025 in math.ST, stat.ML, and stat.TH

Abstract: Over the last decade, a wave of research has characterized the exact asymptotic risk of many high-dimensional models in the proportional regime. Two foundational results have driven this progress: Gaussian universality, which shows that the asymptotic risk of estimators trained on non-Gaussian and Gaussian data is equivalent, and the convex Gaussian min-max theorem (CGMT), which characterizes the risk under Gaussian settings. However, these results rely on the assumption that the data consists of independent random vectors--an assumption that significantly limits its applicability to many practical setups. In this paper, we address this limitation by generalizing both results to the dependent setting. More precisely, we prove that Gaussian universality still holds for high-dimensional logistic regression under block dependence, $m$-dependence and special cases of mixing, and establish a novel CGMT framework that accommodates for correlation across both the covariates and observations. Using these results, we establish the impact of data augmentation, a widespread practice in deep learning, on the asymptotic risk.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 57 likes.

Upgrade to Pro to view all of the tweets about this paper: