Papers
Topics
Authors
Recent
2000 character limit reached

A Statistical Learning Approach for Feature-Aware Task-to-Core Allocation in Heterogeneous Platforms (2502.15716v1)

Published 26 Jan 2025 in cs.DC and cs.LG

Abstract: Optimizing task-to-core allocation can substantially reduce power consumption in multi-core platforms without degrading user experience. However, many existing approaches overlook critical factors such as parallelism, compute intensity, and heterogeneous core types. In this paper, we introduce a statistical learning approach for feature selection that identifies the most influential features - such as core type, speed, temperature, and application-level parallelism or memory intensity - for accurate environment modeling and efficient energy optimization. Our experiments, conducted with state-of-the-art Linux governors and thermal modeling techniques, show that correlation-aware task-to-core allocation lowers energy consumption by up to 10% and reduces core temperature by up to 5 degrees Celsius compared to random core selection. Furthermore, our compressed, bootstrapped regression model improves thermal prediction accuracy by 6% while cutting model parameters by 16%, yielding an overall mean square error reduction of 61.6% relative to existing approaches. We provided results based on superscalar Intel Core i7 12th Gen processors with 14 cores, but validated our method across a diverse set of hardware platforms and effectively balanced performance, power, and thermal demands through statistical feature evaluation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.